HEADEND OPTICS PLATFORM (CH3000)

OR3144H
RFOG DIPLEXER/RETURN RECEIVER

FEATURES

- Enables deployments of RFOG applications
- Low optical insertion loss
- Low noise
- Low power consumption
- 5–85 MHz passband
- Eight LC/APC connectors provide four 1550 nm forward signal inputs and four network outputs (1550 nm forward and 1310 nm, 1590 nm, or 1610 nm return)
- RF attenuator
- Front panel –20 dB test port for RF return
- Hot plug-in/out
- Local and remote status monitoring capability
- One half-depth slot in CH3000 Chassis

PRODUCT OVERVIEW

The ARRIS OR3144H RFOG Diplexer/Return Receiver provides, in a single half-depth module, a completely integrated diplexer/return receiver for RFOG applications where digital receivers are located in a headend or hub facility.

In the OR3144H, eight LC/APC connectors provide the interface for four 1550 nm forward signal inputs and four access network ports (1550 nm downstream output and return signal inputs of 1310, 1590, or 1610 nm). The combined RF return signals are output through an F-type connector on the front panel of the module.
In the forward path, the 1550 nm broadcast inputs are injected into the four broadcast input (BC-NC) ports and are independently passed through the OR3144H to the 1550 nm downstream plant. In the upstream direction, the return signals, which can be either 1310 nm, 1590 nm, or 1610 nm, are separated from the 1550 nm downstream signals, and converted to RF via optical-to-electrical (O/E) conversion.

Following the optical-to-electrical conversion, the combined RF signal is available at the F-type front panel mounted connector. The gain of the combined RF signal can be manually adjusted with a built-in attenuator using management software. A -20 dB G-type RF test point is available on the front panel.

High density packaging enables network operators to install up to 28 OR3144H modules per 3RU chassis, all of which can be monitored remotely or locally from the power supply module. Additionally, the compact single-width module design can be plugged in either the front or rear of the CH3000 3RU chassis to optimize equipment installation and operating conditions. The compact design minimizes rack space requirements in headends or hubs and enhances deployment of traditional HFC, passive HFC, and fiber-to-the-home (FTTH) networks.